49 research outputs found

    Zero-error communication over adder MAC

    Full text link
    Adder MAC is a simple noiseless multiple-access channel (MAC), where if users send messages X1,,Xh{0,1}nX_1,\ldots,X_h\in \{0,1\}^n, then the receiver receives Y=X1++XhY = X_1+\cdots+X_h with addition over Z\mathbb{Z}. Communication over the noiseless adder MAC has been studied for more than fifty years. There are two models of particular interest: uniquely decodable code tuples, and BhB_h-codes. In spite of the similarities between these two models, lower bounds and upper bounds of the optimal sum rate of uniquely decodable code tuple asymptotically match as number of users goes to infinity, while there is a gap of factor two between lower bounds and upper bounds of the optimal rate of BhB_h-codes. The best currently known BhB_h-codes for h3h\ge 3 are constructed using random coding. In this work, we study variants of the random coding method and related problems, in hope of achieving BhB_h-codes with better rate. Our contribution include the following. (1) We prove that changing the underlying distribution used in random coding cannot improve the rate. (2) We determine the rate of a list-decoding version of BhB_h-codes achieved by the random coding method. (3) We study several related problems about R\'{e}nyi entropy.Comment: An updated version of author's master thesi

    Non-linear Log-Sobolev inequalities for the Potts semigroup and applications to reconstruction problems

    Full text link
    Consider a Markov process with state space [k][k], which jumps continuously to a new state chosen uniformly at random and regardless of the previous state. The collection of transition kernels (indexed by time t0t\ge 0) is the Potts semigroup. Diaconis and Saloff-Coste computed the maximum of the ratio of the relative entropy and the Dirichlet form obtaining the constant α2\alpha_2 in the 22-log-Sobolev inequality (22-LSI). In this paper, we obtain the best possible non-linear inequality relating entropy and the Dirichlet form (i.e., pp-NLSI, p1p\ge1). As an example, we show α1=1+1+o(1)logk\alpha_1 = 1+\frac{1+o(1)}{\log k}. The more precise NLSIs have been shown by Polyanskiy and Samorodnitsky to imply various geometric and Fourier-analytic results. Beyond the Potts semigroup, we also analyze Potts channels -- Markov transition matrices [k]×[k][k]\times [k] constant on and off diagonal. (Potts semigroup corresponds to a (ferromagnetic) subset of matrices with positive second eigenvalue). By integrating the 11-NLSI we obtain the new strong data processing inequality (SDPI), which in turn allows us to improve results on reconstruction thresholds for Potts models on trees. A special case is the problem of reconstructing color of the root of a kk-colored tree given knowledge of colors of all the leaves. We show that to have a non-trivial reconstruction probability the branching number of the tree should be at least logklogklog(k1)=(1o(1))klogk.\frac{\log k}{\log k - \log(k-1)} = (1-o(1))k\log k. This extends previous results (of Sly and Bhatnagar et al.) to general trees, and avoids the need for any specialized arguments. Similarly, we improve the state-of-the-art on reconstruction threshold for the stochastic block model with kk balanced groups, for all k3k\ge 3. These improvements advocate information-theoretic methods as a useful complement to the conventional techniques originating from the statistical physics

    Faster Algorithms for Structured Linear and Kernel Support Vector Machines

    Full text link
    Quadratic programming is a ubiquitous prototype in convex programming. Many combinatorial optimizations on graphs and machine learning problems can be formulated as quadratic programming; for example, Support Vector Machines (SVMs). Linear and kernel SVMs have been among the most popular models in machine learning over the past three decades, prior to the deep learning era. Generally, a quadratic program has an input size of Θ(n2)\Theta(n^2), where nn is the number of variables. Assuming the Strong Exponential Time Hypothesis (SETH\textsf{SETH}), it is known that no O(n2o(1))O(n^{2-o(1)}) algorithm exists (Backurs, Indyk, and Schmidt, NIPS'17). However, problems such as SVMs usually feature much smaller input sizes: one is given nn data points, each of dimension dd, with dnd \ll n. Furthermore, SVMs are variants with only O(1)O(1) linear constraints. This suggests that faster algorithms are feasible, provided the program exhibits certain underlying structures. In this work, we design the first nearly-linear time algorithm for solving quadratic programs whenever the quadratic objective has small treewidth or admits a low-rank factorization, and the number of linear constraints is small. Consequently, we obtain a variety of results for SVMs: * For linear SVM, where the quadratic constraint matrix has treewidth τ\tau, we can solve the corresponding program in time O~(nτ(ω+1)/2log(1/ϵ))\widetilde O(n\tau^{(\omega+1)/2}\log(1/\epsilon)); * For linear SVM, where the quadratic constraint matrix admits a low-rank factorization of rank-kk, we can solve the corresponding program in time O~(nk(ω+1)/2log(1/ϵ))\widetilde O(nk^{(\omega+1)/2}\log(1/\epsilon)); * For Gaussian kernel SVM, where the data dimension d=Θ(logn)d = \Theta(\log n) and the squared dataset radius is small, we can solve it in time O(n1+o(1)log(1/ϵ))O(n^{1+o(1)}\log(1/\epsilon)). We also prove that when the squared dataset radius is large, then Ω(n2o(1))\Omega(n^{2-o(1)}) time is required.Comment: New results: almost-linear time algorithm for Gaussian kernel SVM and complementary lower bounds. Abstract shortened to meet arxiv requiremen

    Spanoids - An Abstraction of Spanning Structures, and a Barrier for LCCs

    Get PDF
    We introduce a simple logical inference structure we call a spanoid (generalizing the notion of a matroid), which captures well-studied problems in several areas. These include combinatorial geometry (point-line incidences), algebra (arrangements of hypersurfaces and ideals), statistical physics (bootstrap percolation), network theory (gossip / infection processes) and coding theory. We initiate a thorough investigation of spanoids, from computational and structural viewpoints, focusing on parameters relevant to the applications areas above and, in particular, to questions regarding Locally Correctable Codes (LCCs). One central parameter we study is the rank of a spanoid, extending the rank of a matroid and related to the dimension of codes. This leads to one main application of our work, establishing the first known barrier to improving the nearly 20-year old bound of Katz-Trevisan (KT) on the dimension of LCCs. On the one hand, we prove that the KT bound (and its more recent refinements) holds for the much more general setting of spanoid rank. On the other hand we show that there exist (random) spanoids whose rank matches these bounds. Thus, to significantly improve the known bounds one must step out of the spanoid framework. Another parameter we explore is the functional rank of a spanoid, which captures the possibility of turning a given spanoid into an actual code. The question of the relationship between rank and functional rank is one of the main questions we raise as it may reveal new avenues for constructing new LCCs (perhaps even matching the KT bound). As a first step, we develop an entropy relaxation of functional rank to create a small constant gap and amplify it by tensoring to construct a spanoid whose functional rank is smaller than rank by a polynomial factor. This is evidence that the entropy method we develop can prove polynomially better bounds than KT-type methods on the dimension of LCCs. To facilitate the above results we also develop some basic structural results on spanoids including an equivalent formulation of spanoids as set systems and properties of spanoid products. We feel that given these initial findings and their motivations, the abstract study of spanoids merits further investigation. We leave plenty of concrete open problems and directions

    Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time

    Full text link
    Given a matrix MRm×nM\in \mathbb{R}^{m\times n}, the low rank matrix completion problem asks us to find a rank-kk approximation of MM as UVUV^\top for URm×kU\in \mathbb{R}^{m\times k} and VRn×kV\in \mathbb{R}^{n\times k} by only observing a few entries specified by a set of entries Ω[m]×[n]\Omega\subseteq [m]\times [n]. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~\cite{jns13} showed that if MM has incoherent rows and columns, then alternating minimization provably recovers the matrix MM by observing a nearly linear in nn number of entries. While the sample complexity has been subsequently improved~\cite{glz17}, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time O~(Ωk)\widetilde O(|\Omega| k), which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require O~(Ωk2)\widetilde O(|\Omega| k^2) time.Comment: Improve the runtime from O(mnk)O(mnk) to $O|\Omega| k)

    Faster Monotone Min-Plus Product, Range Mode, and Single Source Replacement Paths

    Get PDF
    One of the most basic graph problems, All-Pairs Shortest Paths (APSP) is known to be solvable in n^{3-o(1)} time, and it is widely open whether it has an O(n^{3-ε}) time algorithm for ε > 0. To better understand APSP, one often strives to obtain subcubic time algorithms for structured instances of APSP and problems equivalent to it, such as the Min-Plus matrix product. A natural structured version of Min-Plus product is Monotone Min-Plus product which has been studied in the context of the Batch Range Mode [SODA'20] and Dynamic Range Mode [ICALP'20] problems. This paper improves the known algorithms for Monotone Min-Plus Product and for Batch and Dynamic Range Mode, and establishes a connection between Monotone Min-Plus Product and the Single Source Replacement Paths (SSRP) problem on an n-vertex graph with potentially negative edge weights in {-M, …, M}. SSRP with positive integer edge weights bounded by M can be solved in Õ(Mn^ω) time, whereas the prior fastest algorithm for graphs with possibly negative weights [FOCS'12] runs in O(M^{0.7519} n^{2.5286}) time, the current best running time for directed APSP with small integer weights. Using Monotone Min-Plus Product, we obtain an improved O(M^{0.8043} n^{2.4957}) time SSRP algorithm, showing that SSRP with constant negative integer weights is likely easier than directed unweighted APSP, a problem that is believed to require n^{2.5-o(1)} time. Complementing our algorithm for SSRP, we give a reduction from the Bounded-Difference Min-Plus Product problem studied by Bringmann et al. [FOCS'16] to negative weight SSRP. This reduction shows that it might be difficult to obtain an Õ(M n^{ω}) time algorithm for SSRP with negative weight edges, thus separating the problem from SSRP with only positive weight edges

    Nearly Optimal Separation Between Partially and Fully Retroactive Data Structures

    Get PDF
    Since the introduction of retroactive data structures at SODA 2004, a major unsolved problem has been to bound the gap between the best partially retroactive data structure (where changes can be made to the past, but only the present can be queried) and the best fully retroactive data structure (where the past can also be queried) for any problem. It was proved in 2004 that any partially retroactive data structure with operation time T_{op}(n,m) can be transformed into a fully retroactive data structure with operation time O(sqrt{m} * T_{op}(n,m)), where n is the size of the data structure and m is the number of operations in the timeline [Demaine et al., 2004]. But it has been open for 14 years whether such a gap is necessary. In this paper, we prove nearly matching upper and lower bounds on this gap for all n and m. We improve the upper bound for n << sqrt m by showing a new transformation with multiplicative overhead n log m. We then prove a lower bound of min {n log m, sqrt m}^{1-o(1)} assuming any of the following conjectures: - Conjecture I: Circuit SAT requires 2^{n - o(n)} time on n-input circuits of size 2^{o(n)}. This conjecture is far weaker than the well-believed SETH conjecture from complexity theory, which asserts that CNF SAT with n variables and O(n) clauses already requires 2^{n-o(n)} time. - Conjecture II: Online (min,+) product between an integer n x n matrix and n vectors requires n^{3 - o(1)} time. This conjecture is weaker than the APSP conjectures widely used in fine-grained complexity. - Conjecture III (3-SUM Conjecture): Given three sets A,B,C of integers, each of size n, deciding whether there exist a in A, b in B, c in C such that a + b + c = 0 requires n^{2 - o(1)} time. This 1995 conjecture [Anka Gajentaan and Mark H. Overmars, 1995] was the first conjecture in fine-grained complexity. Our lower bound construction illustrates an interesting power of fully retroactive queries: they can be used to quickly solve batched pair evaluation. We believe this technique can prove useful for other data structure lower bounds, especially dynamic ones

    Machine building Gearbox Fault Diagnosis Based on EEMD-SVD

    Get PDF
    Abstract Gearbox is an important mechanical device to transmit power. In order to ensure the normal operation of gearbox under the condition of top load, high efficiency and high precision, it&apos;s necessary to extract fault feature information using signal processing method and to further analyze and research gearbox fault. In the paper an improved de-noising method based on de-noising of singular value decomposition (SVD) is proposed, which sets threshold on the basis of standard derivation of the difference between adjacent singular values, and simulation is made. Through further research, combined it with ensemble empirical mode decomposition (EEMD), a new de-noising method based on EEMD-SVD (ensemble empirical mode decomposition and singular value decomposition) is derived, which is proved to be an effective de-noising method through simulation experiment. EEMD-SVD method is applied to fault diagnosis of gearbox and good results are achieved
    corecore